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Abstract— Monocular SLAM in deformable scenes will open
the way to multiple medical applications like computer-
assisted navigation in endoscopy, automatic drug delivery or
autonomous robotic surgery. In this paper we propose a novel
method to simultaneously track the camera pose and the 3D
scene deformation, without any assumption about environment
topology or shape. The method uses an illumination-invariant
photometric method to track image features and estimates
camera motion and deformation combining reprojection error
with spatial and temporal regularization of deformations. Our
results in simulated colonoscopies show the method’s accuracy
and robustness in complex scenes under increasing levels of
deformation. Our qualitative results in human colonoscopies
from Endomapper dataset show that the method is able to
successfully cope with the challenges of real endoscopies:
deformations, low texture and strong illumination changes.
We also compare with previous tracking methods in simpler
scenarios from Hamlyn dataset where we obtain competitive
performance, without needing any topological assumption.

I. INTRODUCTION
Visual Simultaneous Localization and Mapping (SLAM)

and Visual Odometry (VO) in static environments have been
hot research topics in the last decades and many methods
have raised to solve them with outstanding accuracy and
robustness using features [1], direct methods [2], or hybrid
techniques [3]. The increasing popularity of these techniques
has raised expectations to solve SLAM in more complex
scenarios. For example, one can think of many useful ap-
plications of SLAM in Minimal Invasive Surgery (MIS)
like guiding surgeons through augmented reality annotations
towards the place where a polyp was detected in a previous
exploration, and automatic polyp measurement to analyze its
evolution. Moreover, surgical robots would greatly benefit
from SLAM inside the human body as they will be more
secure, robust and accurate, and they will be able to combine
information coming from previous explorations or from other
sensors like Computerized Tomography (CT).

However, visual SLAM inside the human body poses
tremendous challenges like weak texture, changing illumi-
nation, specular reflections, and lack of rigidity (Fig. 1).
Weak texture and specular reflections hinder data association
algorithms based on feature matching, preventing methods
like ORB-SLAM3 [4] from working in these sequences. On
the other hand, changing illumination puts direct methods
like DSO [2] or DSM [5] and hybrid methods like SVO [3]

This work was supported by EU-H2020 grant 863146: ENDOMAPPER,
Spanish government grant PGC2018-096367-B-I00 and by Aragón govern-
ment grant DGA T45-17R and PhD scholarship of J. J. Gómez-Rodrı́gez.
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Fig. 1: Tracking the camera pose and scene deformation
in a human colonoscopy from Endomapper dataset. Top:
images from the sequence. Bottom: camera trajectory in blue,
undeformed map points in black and map point deformation
trajectories in red.

in serious trouble, as they assume constant illumination of
the environment. In contrast, we solve data association with
a modified Lucas-Kanade algorithm, first presented in [6],
that is able to cope with local illumination changes.

But the major challenge to be addressed for SLAM
inside the human body is deformable scenes, as breaking
up with the rigidity assumption impairs both environment
reconstruction and camera tracking. The recent DefSLAM
[7] is the first monocular deformable SLAM system able
to perform tracking and mapping, but it strongly relies on
the assumption of a smooth continuous shape with planar
topology, which does not hold in colonoscopies (see Fig. 1).

In this paper we present the first pure monocular method
able to initialize a map and track camera pose and scene
deformation in general scenes inside the human body (Fig.
1), without any topological or shape assumption. Our main
contribution is a simple formulation that combines photomet-
ric feature tracking and an optimization based on reprojection
error with spatial and temporal regularizers that encode local
assumptions over the environment deformation, endowing
our algorithm with enough expressivity to model complex
scenes and track their deformations in real-life endoscopies.
We provide quantitative evaluation on realistic colonoscopy
simulations [8] and qualitative results on real human colono-
scopies from the Endomapper project [9], that were out
of reach for previous techniques. We present quantitative
comparisons in almost-planar scenes from Hamlyn dataset
[10] where we obtain competitive performance, despite not
using any assumption on the scene topology or shape.
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II. RELATED WORK

The computer vision and robotics communities have de-
veloped excellent rigid visual SLAM systems [2] [3] [4] in
the last years. While all these algorithms use quite different
techniques they all rely in a vital, yet simple, assumption:
that the environment is static. In contrast, deformable SLAM,
which completely breaks up with the rigidity assumption, is
still a challenging research topic.

Many works have tried to solve deformable SLAM by
using sensors that provide complete 3D information of the
environment like stereo or RGB-D cameras. This is the
case of the seminal DynamicFusion [11] which uses RGB-D
images to reconstruct highly deforming environments with
an Iterative Closest Point (ICP) algorithm and a spatial
regularizer to constrain deformations of points that are close
to each other, that we adopt in our work. Several extensions
to DynamicFusion have been developed since then, being the
most notably VolumeDeform [12] which combines the use of
SIFT features and reprojection error with a dense ICP data
term, to reduce drift and increase robustness. In [13] they
formulate a variational method that takes RGB-D images
to reconstruct a deforming environment. This work is later
extended in [14] introducing camera pose computation.

There is increasing interest in SLAM in Minimally Inva-
sive Surgery (MIS), where RGB-D sensors are not available.
For this reason, works like [15] [16] use depth coming
form stereo images and an error function that combines
reprojection errors and regularizers to perform deformable
SLAM. As before, the reprojection error is augmented using
other 3D terms like ICP errors or Point-to-Plane errors.
Regarding the regularizers used, they are similar to the one
introduced in DynamicFusion to represent that deformations
occur locally, using pair-wise deformation terms between
close points, which prevents divergence of individual points
in the reconstruction.

Nevertheless stereo cameras are not appropriate for certain
applications like colonoscopies where two cameras with
enough baseline may not fit in the body cavities. In this
kind of scenarios, only monocular deformable SLAM can be
performed. This is even a harder problem since no real 3D
information is available from a single view, scale is unobserv-
able, and combining multiple views of a deforming scene is
an open issue. The first monocular deformable SLAM system
is DefSLAM [7] which splits the deformable SLAM problem
in 2 threads, one for tracking and one for mapping. They
use ORB features and minimize a reprojection error term
with a deformation energy term that penalizes stretching and
bending of the imaged surface. However, as ORB features
are quite unstable in intracorporeal sequences, SD-DefSLAM
[6] extends DefSLAM to a semi-direct method by integrating
an illumination-invariant Lucas-Kanade tracker to perform
data association, achieving better robustness and accuracy.
Crucially, both methods assume that the surface has planar
topology, and model the surface with a triangle mesh which
impose a strong global condition over the environment: the
imaged surfaces have to be continuous with no holes. This

is quite a strong assumption that seriously limits the kind of
scenes that can be handled by both algorithms excluding, for
example, colonoscopies (Fig. 1).

To tackle this limitation, [17] proposes a fully photomet-
ric algorithm to track camera pose and deformation using
sparse 3D surfels (surface elements) under the assumption
of local isometry. The use of surfels that have no constrains
between them allows to model any kind of topologies. While
obtaining very good results in medical scenes, the method
still requires 3D information coming from a stereo camera
to initialize the surfels. Also, the use of large surfels (in
practice, square patches of 23× 23 pixels in the image) can
easily violate the local isometry assumption and is inefficient
as using too many close pixels provide redundant information
with little to no improvement in accuracy [2]. Furthermore,
the regularizers used impose small deformations with respect
to a pose at rest, which can be inappropriate in many
applications.

In contrast, in this work we propose a pure monocular
method for tracking camera pose and deformation. Under
the assumption of slow deformations, we perform fully
automatic monocular map initialization to obtain a first
seed of the environment structure. Following previous works
[3], [6], we use photometric feature tracking for robustness
and accuracy, and reprojection error for convergence and
efficiency during optimization. In addition, we integrate two
regularizers that encode our assumptions of smooth and slow
deformation in order to constrain the reconstruction problem.

III. DEFORMABLE TRACKING

This section is devoted to presenting our tracking al-
gorithm. We first present the assumptions that governing
our system. Afterwards we introduce our data association
for tracking. Then we explore our algorithm for monocular
map initialization and finally we present our optimization
backbone and its formulation encoding each one of our
assumptions.

A. Assumptions

The biggest difficulty when dealing with deformable sce-
narios is that the rigid assumption is violated. This makes
camera pose and deformation prediction a non-separable
problem for which infinite solutions arise, i.e. not all degrees
of freedom (DoF) are observable.

This is even drastically worse when using a single monoc-
ular camera as the scale is also unknown. For all this, one
must incorporate some a-priori knowledge into the problem
in order to confine the possible solutions into a reduced
set of solutions that correctly represents the real nature of
the environment. In this paper, we propose the following
assumptions to constrain our reconstruction problem:

1) Local isometry: we assume that the vicinity of a
surface point follows an isometric model, that is local
distances are preserved.

2) Smooth deformation: we consider that points that are
close in space must undergo similar deformations.



3) Slow deformation: deformations are assumed to hap-
pen slowly over time.

4) Camera motion is faster than deformation: finally,
we assume that camera can move faster than defor-
mations, so we attribute rigid motions to the camera,
computing deformations as small as possible.

Assumption (1) enables us to use a phtometric feature
tracker defining a small neighbourhood around each tracked
point that is assumed to be locally rigid. This allows us to
take an approach similar to [18] to perform short term data
association. Assumption (2) introduces local constrains in
the deformations observed without imposing a global defor-
mation or surface model. This effectively makes our system
general enough to model any environment. Assumption (3)
allow us to imposes temporal continuity in the position of
surface points, reducing the effect of image and data associ-
ation noise. Finally, Assumption (4) is the one that allows us
to separate camera motion and environment deformation. In
all SLAM systems, the sensor provides relative information,
and as a result, the absolute pose of camera and environment
is not observable. In rigid SLAM this is simply addressed
by choosing an arbitrary global pose, for example the first
camera pose is chosen to be zero. In deformable SLAM
this is not enough as a camera motion is indistinguishable
from a hypothetical case where all the environment moves
rigidly, what is called the floating map ambiguity in [17].
This assumption allow us to use regularizers that penalize
deformation over camera motion. In that way, the rigid part
of the relative motion between environment and camera will
be attributed to camera motion, obtaining deformations as
small as possible.

It is important to note that none of the above assump-
tions impose global constrains over the surface topology,
smoothness, or deformation, allowing us to model generic
deformations and environments.

B. Data Association
Our previous experience in monocular deformable SLAM

[6] has proven that an accurate data association is crucial in
order to reach good accuracy and robustness. Indeed other
works have shown the potential of direct methods in this
task like [2] in which the photometric term allows to get as
a byproduct of the tracking the feature associations. This is
done by imposing a global rigid transformation to all points
as it is assumed that the environment is stationary. However
this is far to be true in deformable SLAM. Indeed one can
not impose any global constrain to the data association step
as it is easily violated by deformations.

For that, we propose to perform photometric data associ-
ation with Shi-Tomasi features [19] prior the camera pose
and deformation estimation using the modified multi-scale
Lucas-Kanade algorithm proposed in [6]:

arg min
d,α,β

∑
v∈P (u)

(I0(v)− αIt (v + d)− β)
2 (1)

where P (u) is a small pixel patch centered at the keypoint
u. I0 is the firs frame, where the points are intialize, and It

Fig. 2: Top: Two images separated by 3 frames from our
EndoMapper dataset with tracked features. Bottom: map
initialized from those tracks

is the current frame in time t. These patches are updated
every 5 images to account for big scale changes or rotations.
This algorithm has been proven to achieve excellent results
when tracking image features in short time steps even in the
presence of deformations or local illumination changes (Fig.
2). The key of its performance lies in using no global model:
each point can move freely with respect the others. Also a
local illumination invariance is achieved by computing local
gain α and bias β terms for each point.

In order to remove any possible outlier track, we compute
the Structural Similarity Index (SSIM) [20] between the
reference x and tracked y pixel patches to identify any outlier
track:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(2)

where µx and σx are the mean and covariance of the pixel
patch, σxy is the crossed covariance between both patches
and C1 and C2 are constant values to avoid inestability when
means and covariances approaches to zero. This has been
proven to be a good similarity metric for small pixel windows
as it combines in a same metric a luminance, contrast and
structure comparison.

C. Monocular map initialization

Initializing a map from monocular images in rigid envi-
ronments is well known in Structure from Motion (SfM). In
deforming environments, Non-Rigid Structure from Motion
(NRSfM) techniques can be used [7]. However, they require,
for example in the map initialization, assumptions such as
a smooth scene surface with planar topology, which are not
met in real colonoscopies (see Fig. 1 and 2).



We propose to exploit assumption (4) using two close
frames in which the environment can be considered quasi-
rigid, and most image innovation can be attributed to the
camera motion. This allows to apply SfM to obtain a
first estimation of the map as if it is rigid and treat any
deformation as small noise.

Ideally, the method should to be independent of the camera
model either pinhole or fish-eye. We propose to initialize the
monocular map by computing the Essential matrix between 2
close frames using as input normalized projective rays from
features in the images. Our proposed initialization algorithm
goes through the following steps:

1) Extract Shi-Tomasi features evenly distributed in the
reference frame I0 and track them in the current frame
It using the Lucas-Kanade optical flow algorithm.
Unproject the matched features into normalized rays
x0
i and xti and using the camera model unprojection

function.
2) Compute an Essential matrix that relates poses of the

two frames:
xti
T
Ex0

i = 0 (3)

This is done inside a RANSAC scheme to reduce the
influence of outliers coming from the data association.

3) Recover the relative camera motion TCtC0 from E.
This will yield to 4 motion hypothesis (2 rotations and
2 translations). We are using close frames to initialize,
hence the camera rotation should be small so we can
safely select the smallest rotation to solve the rotation
ambiguity. Finally we disambiguate the translation
component by selecting the one that yields to the
highest number of points in front of both cameras.

4) Reconstruct environment using the camera motion re-
covered. For that, we use the Inverse Depth Weighted
Midpoint [21] to triangulate tracked features as it
provides low 3D-2D errors in low parallax scenarios.

D. Camera pose prediction

To encode assumption (4), we first estimate a preliminar
camera pose TCtW for time t prior estimating any deforma-
tion. We assume that the camera follows a physical model of
constant velocity. This provides us with an initial guess of
the camera pose that will then be refined using Non Linear
Least Squares (NLLS) using a reprojection error with the
environment geometry observed in the previous frame t− 1.
This can be seen as a way to attribute to a camera motion
most of the image innovation seen. Note that this is not
the final pose we compute but just a seed for our global
optimization for the deformations and camera pose detailed
in the next section.

E. Tracking camera pose and deformation

Our goal is, given some feature matches in the current
frame uti and the 3D reconstruction in the previous temporal
instant Xt−1

i , to estimate the current camera pose TCtW and
the deformation δδδti of each point such as the current scene
can be estimated as Xt

i = Xt−1
i + δδδti.

For that we introduce a reprojection data term Eti,rep
along with 2 regularizers Eti,spa and Eti,tmp to constrain the
deformations in our total global cost function, Et for time t,
defined by:

Et =
∑
i∈P

Eti,rep + λspaE
t
i,spa + λtmpE

t
t,tmp (4)

where P represents the set of points being observed in
the current frame. Our global problem can be solved using
Non-Linear Squares optimization such us:

TCtW , δδδ
t
i = arg min

TCtW ,δδδti

Et (5)

Next we define the terms of our cost function Et.
1) Reprojection term: we obtain feature matches ut

i in
the current frame with the modified Lucas-Kanade algorithm
presented in [6], computing on this way the reprojection error
as it follows:

Eti,rep = ρ
(
‖uti − ûti‖2Σrep

)
(6)

where ρ is the Hubber robust cost, ûti and uti are respec-
tively the match of feature i in the current image It and its
projection given by:

ûti = Π(TCtC0(Π−1(u0
i , di) + Xt−1

i + δδδ
t

i) (7)

The accuracy of indirect methods is limited by the feature
detector resolution (typically no less than 1 pixel). However
matches obtained with photometric methods have subpixel
accuracy boosting on this way the accuracy of our reprojec-
tion term while keeping its nice convergence basin.

2) Spatial regularizer: Following [11] we encode as-
sumption (2) with a regularizer that constrains deformations
locally so they are spatially smooth:

Eti,spa =
∑
j∈G(i)

ρ
(
‖wtij(δδδ

t
i − δδδ

t
j)‖2Σspa

)
(8)

Here G represents a weighted graph that encodes related
points whose deformations should be regularized together.
The weight in G of two connected points i and j is wtij which
depends on the Euclidean distance between both points at
the immediately previous time instant t− 1 and is computed
according to the following formula:

wtij = exp

(
−
∥∥Xt−1

i −Xt−1
j

∥∥2

2σ2

)
(9)

where σ is a radial basis weight that controls the influence
radius of each point. This regularizer is crucial as it enforces
as rigid-as-possible deformations and contributes towards a
global consistency of the deformations.



3) Temporal regularizer: Finally we add a temporal reg-
ularizer on the deformations to represent that they occur
slowly over time (assumption (3)):

Eti,tmp = ρ
(
‖δδδti‖2Σtmp

)
(10)

This regularizer also interacts with assumption (4) as it
penalizes big deformations that could be explained with a
camera motion.

IV. EXPERIMENTS

We evaluate our method in a Minimal Invasive Surgery
sequences, more specifically in colonoscopies. This kind of
sequences pose big challenges as they exhibit continuous de-
formations, poor textures and harsh illumination conditions.
We provide quantitative results in photorealistic synthetic
data and qualitative experiments with in-vivo human colono-
scopies. For comparison purposes we also test our method
in the Hamlyn dataset using its stereo setup to evaluate
our reconstructions against other state-of-the-art methods. A
summary of our main results can be seen in Fig 3.

A. Implementation details

We implement the monocular map initialization, camera
pose and deformation estimation in C++. For non Linear
Squares optimization we use the Levenberg-Marquart al-
gorithm implemented in the g2o library [22]. For feature
extraction and matching we implement our own Shi-Tomasi
feature extractor and Lucas-Kanade tracker (Eq. 1). We set
a threshold of 0.8 for the SSIM score (Eq. 2) to detect and
reject spurious feature tracks. Regarding the optimization,
we set Σrep to 1 pixel, Σspa and Σtmp to 10 mm. Since
Σspa and Σtmp correctly scales the Espa and Etmp terms,
we set their respective λ to 1. Finally, for the Hubber cost
threshold we use the 95 percentile of χ2, with 2 DoF for
Erep and with 3 DoF for Espa and Etmp.

Regarding the regularization graph G, for each point we
only add regularization terms with its K = 20 closest points
in 3D with σ set to 15 mm when initializing the map with
the monocular camera and 55 mm when using the stereo to
get the first map reconstruction. This is done to ensure that
a points is always regularized and at the same time ignoring
points that have little influence with the current point to
reduce the computational burden.

B. Simulated Colon dataset

We use the VR-Caps [8] to generate photerealistic syn-
thetic image sequences of a 3D colon model obtained from
a Computed Tomography. Since this is a simulation, we have
access full to camera pose and 3D scene ground truth. Indeed,
we can generate sequences with different camera trajectories
and degrees of deformation enabling us to test each one of
the components of our system individually.

For evaluation purposes, we simulate an insertion ma-
neuver (Fig. 3b) with different degrees of deformation.
We model the deformations via a sine wave propagating
along the simulated colon. We apply this deformations to

A (mm)
ω (rad/s)

0 2.5 5

0 1.15 - -
2.5 - 1.77 1.70
5 - 1.84 3.65
10 - 2.27 4.57

TABLE I: Reconstruction RMSE (mm) in simulated colono-
scopies [23] for different deformation types

the y coordinate of the point surfaces simulating perilstatic
movements according to the following formula:

V ty = V 0
y +A sin(ωt+ V 0

x + V 0
y + V 0

z ) (11)

where V 0
x , V 0

y and V 0
z are the coordinates of the surface

point at rest. We can control the magnitude and velocity
of the deformations according to the parameters A and ω
respectively. Table I shows the reconstruction accuracy of our
system in the simulated sequence with different deformation
velocities and amplitudes. The error shown is the Root Mean
Square Error (RMSE) of the reconstructed points for all
frames according to:

erms =

√∑
i ‖stX̂t

i −Xt,gt
i ‖2

n
(12)

Since this is a full monocular formulation, we find, for
each frame, an optimal scale factor, st, to align our recon-
structions with the ground truth.

Results show that our formulation can reach nice recon-
struction error around 2-3 mm even though in presence of
deformations. One interesting result is that our system is
more sensitive to deformation velocities than the magnitude
itself being aligned with assumption (3).

C. Hamlyn dataset

We also test our formulation in real endoscopic sequences.
For that purpose, we use sequences 20 (Fig. 3c) and 21
(Fig. 3d) of the Hamlyn dataset [10]. Sequence 20 (from
frame #750) corresponds to abdominal exploration with slow
deformation. Sequence 21 (also from frame #750) images a
liver with 2 lobes each of them moving on its own. This can
be considered as an articualted motion. In both sequences,
surface texture is poor and illumination conditions are un-
favorable. This dataset is recorded with a stereo endoscope,
allowing us to estimate environment groundtruth from the
disparity observed by the stereo sensor.

We evaluate our formulation in 2 setups (Table II) for
comparison purposes. In the first setup, we initialize our
system with the first stereo images and perform monoc-
ular tracking, in order to allow comparison with previous
methods ORB-SLAM [1], SD-DefSLAM [6] and Direct and
Sparse Deformable Tracking (DSDT) [17]. Since we are
initializing from the stereo images, we do not perform any
scale alignment when computing the RMSE. We achieve



(a)

(b)

(c)

(d)

Fig. 3: Results of our algorithm for different sequences. Per each sequence, in columns results after the initial middle and
final frame. Two rows per sequence. The first row displays the 3D reconstruction: black points are the undeformed map, red
lines are the map point deformation trajectories, in blue the camera trajectory. The second row the RGB frames with the
tracked features in green. From top to bottom: (a) EndoMapper real in-vivo sequence, (b) Simulated sequence, (c) Hamlyn
20 sequence and (d) Hamlyn 21 sequence. All datasets have been processed using only monocular images.



Stereo Initialization Monocular Init.
ORB-SLAM3 [4] SD-DefSLAM [6] DSDT [17] Ours Ours

20 RMSE 1.37 4.68 2.9 1.48 2.79
# Fr. 220 252 500 350 350

21 RMSE - 6.19 1.3 1.55 3.31
# Fr. - 323 300 300 300

TABLE II: Comparison with previous methods in sequences 20 and 21 from Hamlyn Dataset as shown in [17].
We report reconstruction RMSE (mm) and number of frames processed.

competitive results regarding reconstruction error, obtaining
a consistent error around 1.5 mm. Since we do not impose
any restriction on the surface topology or in the deformations,
we achieve a significantly smaller error compared with SD-
DefSLAM. This is specially clear in sequence 21 with the
2 lobes moving independently what limits the accuracy of
SD-DefSLAM. The comparison with DSDT suggests that
our regularizers are versatile, we are able to code better
the spatial smoothness of sequence 20, achieving a lower
error, while still being competitive in hard discontinuity of
sequence 21. DSDT is able to keep the track longer because,
in contrast with DSDT, our method still does not implement
any policy to recover points lost during tracking.

The second setup uses the full monocular pipeline in-
cluding our monocular initalization (Sec. III-C) computing
the RMSE after a per frame scale correction (Eq. 12). In
this scenario, our system reaches errors around 2.8-3.3 mm
which is aligned with the errors obtained in the simulation
dataset under significant deformations. The increase in error
compared with the stereo setup is due to the quality of the
map initialization that no longer relies on a perfect stereo
initialization.

Also it is important to note that in these sequences the
surfaces shape and deformations observed are completely
different from the ones seen in the simulation dataset proving
that we can model general surface shapes and deformations.

D. Real endoscopy sequences

We provide qualitative results in real in-vivo human
colonoscopy sequences from the EndoMapper project [9].
These sequences display the big challenges real colono-
scopies pose, such as deformation, little to no texture in
the images, lighting conditions varying from frame to frame,
reflections and fish-eye optics (fig. 1.)

In this case, there is no ground truth to compare with, be-
cause the dataset just records standard monocular endoscope
procedures. For this reason, we only provide qualitative
results. Fig. 2 displays how we are able to initialize maps
with high density of points form quite close (3 frames apart)
frames capturing the tubular topology of the colon. In Figures
1 and 3a, it can be seem how our algorithm is able to capture
the scene deformation and the endoscope trajectory, being
able to track map points for more than 30 frames in two
examples of real colonoscopies of two different patients.

V. CONCLUSIONS

In this work we have presented an approach for monocular
camera tracking and deformation estimation without assump-
tions on the environment shape or topology. Instead, we
successfully encode with simple regularizers the assump-
tions about the type of deformations that are common in
endoscopy. Compared with the state of the art, and our
method, including map initialization, is applicable in a much
wider range of shape and topologies, like colonoscopies,
while having similar accuracy in more standard almost-planar
scenarios.

The presented monocular initialization and tracking con-
tributes to make real a fully deformable SLAM system.
The deformable mapping to expand the map as the camera
explores new regions is closer after our contribution, being
a promising venue of future work in the short term. In the
mid-term, a multi-map deformable SLAM offers a profitable
for future work because will be able to cope with occlusions
and tracking losses prevalent in real colonoscopies.
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