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Abstract. Deploying autonomous robots capable of exploring unknown
environments has long been a topic of great relevance to the robotics
community. In this work, we take a further step in that direction by
presenting an open-source active visual SLAM framework that leverages
the accuracy of a state-of-the-art graph-SLAM system and takes advan-
tage of the fast utility computation that exploiting the structure of the
underlying pose-graph offers. We achieve fast decision making through
careful estimation of a posteriori weighted pose-graphs and by employing
a utility function that balances exploration and exploitation principles.
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1 Introduction

Active simultaneous localization and mapping (SLAM) names the problem
of autonomously deciding where a robot should move next in order to form

the most accurate representation of the environment (i.e., including localization
and mapping) possible. Thus, it refers to the problem of decision-making on
control commands for a robot which is performing SLAM and that is capable of
navigating in an unknown environment. See [1] and the references therein.

Traditional approaches to solve active SLAM born within the robotics com-
munity are numerous and vary in shape and form [2–5]. Most of them share,
however, the following division in three discernible stages [1, 6]:

– Goal identification: to reduce the (ideally infinite) number of possible desti-
nations, it is common to define a finite and typically low-dimensional subset
of boundaries between the known and unknown regions, i.e., frontiers.

– Utility computation: the expected usefulness of executing a candidate set of
actions can be estimated studying the expected uncertainty in the two target
random variables (i.e., the robot location and the map); either leveraging
information theory (IT) or theory of optimal experimental design (TOED).

– Selection and execution of the optimal action. After estimating utility, it all
comes down to selecting the most useful destination and traveling to it.

The interest of this paper particularly lies on TOED-based approaches, that
directly quantify utility from the variance of the variables of interest, under the



2 J. A. Placed et al.

assumption of Gaussianity. Feder et al. [6] were the first to use task-oriented met-
rics (i.e., optimality criteria) for active SLAM and, since then, their popularity
has steadily grown due to their strong mathematical basis and elegant formula-
tion. Their complexity and high computation burden, though, make information
theoretic approaches still prevail in the literature [3, 7].

In these active SLAM approaches, the second stage represents the main bot-
tleneck as it requires analyzing the spectrum of the Fisher information matrices
(FIMs) expected for a candidate set of actions. Such matrices must comprise the
uncertainties of the robot state (e.g., pose) and the environment representation
(i.e., map). For landmark-based maps, utility can be obtained either by studying
a full (high-dimensional) FIM that contains both robot poses and landmarks [6],
or by computing the uncertainty of the robot subject to the set of observations,
i.e., marginalizing the landmarks’ information [8]. In contrast to the above, Wang
and Englot [9] incorporate the robot’s expected variance into the landmarks’ un-
certainty. On the other hand, for dense metric maps (e.g., occupancy grids), most
works resort to IT metrics, e.g., the entropy [3]. An exception is the work from
Carrillo et al. [5], where a TOED-based metric of the uncertainty in the robot
location is used to correct the entropy of the map. The opposite idea is employed
in [10], where the authors heuristically embed the impact of the map’s entropy
on the location uncertainty metric.

For the case of active graph-SLAM, significant reductions in the time required
to execute the second stage were recently achieved leveraging the insight of util-
ity being closely linked to the topology of the underlying pose-graph [11, 12].
Intuitively, the connectivity (i.e., the Laplacian spectrum) of the pose-graph can
be regarded as a measure of how well the environment model is being formed.
Later works [10,13] demonstrate the tight relationship between modern optimal-
ity criteria and connectivity indices, when the edges of the graph are weighted
appropriately. Hence, the optimal actions to execute can be found by studying
the topology of the expected weighted pose-graphs rather than analyzing the
full posterior FIM. Successful applications that leverage the above include, for
example, coverage tasks with uncertainty awareness [14] or 2D active SLAM [13].

1.1 Contributions

The main contribution of this work is an active visual SLAM system that ex-
ploits the topology of the underlying pose-graph to identify D-optimal candi-
date locations over affordable time horizons. From the accurate sparse map and
trajectory estimation ORB-SLAM2 [15] provides, we design a decision-making
mechanism that switches between exploration and exploitation principles. To do
so, we adapt the insight of discounting information in Shannon-Rényi entropy [5]
to operate in the task space, and leverage the theoretical results on pose-graphs’
optimality from [13]. The above, along the method to predict reobservations
and their associated information, emerge as side contributions of our work. The
last contribution is the code release in the ExplORB-SLAM repository for ROS
Noetic, representing a complete framework to test this and other active SLAM
approaches and aiming to pave the way for reproducible research in this field.

https://github.com/JulioPlaced/ExplORB-SLAM
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1.2 Paper Structure

The rest of the paper is organized as follows. Section 2 contains a brief introduc-
tion to visual graph-SLAM, modern optimality criteria, and their relationship
with graph connectivity indices. In Section 3, we present and thoroughly describe
the proposed system. Section 4 shows experimental validation results. Finally,
the manuscript concludes in Section 5, where future work is also outlined.

2 Background

2.1 Visual Graph-SLAM

Visual SLAM refers to the problem of reconstructing the environment and locat-
ing an agent using only images from a set of cameras as inputs. This modality is
a hot topic in both industry and academia as cameras are cheap sensors that also
provide useful information for other computer vision tasks like object detection.

ORB-SLAM2 [15] is one of the state-of-the-art algorithms in V-SLAM and is
the basic building block for this paper. It leverages the use of ORB features inside
an accurate bundle adjustment (BA) optimization framework that minimizes the
reprojection error of the estimated landmarks in order to refine its 3D position
and the pose of the agent. In order to constrain the execution time, ORB-SLAM
only performs BA at a lower rate than the video frequency using a subset of
the images received, so called keyframes, that carry high visual innovation with
respect the rest of the map.

An interesting property of BA is its sparsity pattern. With a simple study of
its structure and its Hessian layout, one can realize that it has a sparse block-
structure that can be also regarded as a graph that connects keyframes to the
observed landmarks. To enhance computation efficiency of the algorithm, the
landmarks can be marginalized out using the Schur complement obtaining the
reduced camera system, whose Hessian only relates keyframes that have common
observations. The corresponding graph is also simplified, forming the so called
pose-graph in which vertices only represent keyframes and edges the relative
pose between pairs of connected keyframes. ORB-SLAM, however, only builds
this simplified graph when it needs to correct a loop. To reduce the computation
burden, it uses an even sparser version of the pose-graph, the essential graph.
The peculiarity of this graph resides in the fact that it only connects keyframes
when they share a minimum amount of observations. Thus, keyframes with few
landmarks in common are not connected, sparsifying the graph.

2.2 On the Optimality of SLAM Pose-graphs

During the second step in active SLAM, quantifying uncertainty is of utmost
importance. On the basis of TOED, Kiefer [16] proves the existence of a family
of scalar mappings ∥·∥ : Rℓ×ℓ 7→ R dependent of just one parameter p and which
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can be expressed in terms of the eigenvalues (λ) of the matrix to be quantified,
e.g., covariance (Σ) or FIM (Φ):

∥Σ∥p ≜

(
1

ℓ
trace(Σp)

) 1
p

(1)

Particularizing the above equation for the boundary values of p, modern optimal-
ity criteria result. The most relevant metric among them isD-optimality (p = 0),
since it captures the global uncertainty [16]. On the downside, it also entails the
highest computational complexity. Its modern formulation is as follows:

D-opt (Σ) ≡ ∥Σ∥0 ≜ exp

(
1

ℓ

ℓ∑
k=1

log(λk)

)
(2)

Let us now consider the specific (and somehow prevalent) case in which
a graph-SLAM algorithm is used during active SLAM. These methods use a
graph representation in which nodes encode the robot and landmark states,
and edges encode the constraints between them (e.g., observations, odometry
or loop closures). A flatter representation can be achieved by marginalizing the
observations and thus only representing the robot states in nodes, i.e. a pose-
graph G. In such case, the i-th vertex vi ∈ V will contain the robot pose (in the
world frame) Twi ∈ SE(n). On the other hand, an arbitrary edge ej ∈ E that
connects the pair of vertices {vi,vk} ∈ V will encode the relative transformation
between such pair, T ik ∈ SE(n), and its associated uncertainty. Due to its higher
sparsity, the latter is preferably represented by the FIM Φj ∈ Rℓ×ℓ; with ℓ the
degrees of freedom of the n-dimensional Euclidean space.

Decision-making in active SLAM can be reduced to evaluating optimality
criteria over the expected FIM of the entire system at candidate goal locations, in
order to compare them and later travel to the most informative one. This full FIM
Y ∈ R|V|ℓ×|V|ℓ must comprise the uncertainty of both the map and the robot
state, as discussed in Section 1, and is commonly built upon the relative FIMsΦj .
See [13] for further details on its structure. High dimensionality of Y makes the
analysis of its spectrum computationally intensive and even intractable for online
systems with large state and/or action spaces. By exploiting the facts that (i) the
sparsity pattern of Y conveys that of the Laplacian of the underlying pose-graph
and (ii) their spectra are intimately linked under certain conditions, optimality
criteria of Y can be approximated by that of the (weighted) Laplacian of the
graph. For the case ofD-optimality, the following relationship may be established
for the general case of graph-SLAM formulated over the Lie group SE(n) [13]:

D-opt(Y ) ≈ D-opt(Lγ) = (|V| t(Gγ))
1

|V| (3)

where Gγ is the posterior pose-graph in which each edge is weighted with the
scalar γj = ∥Φj∥0, Lγ its Laplacian matrix, t(Gγ) its weighted number of span-
ning trees and |V| the dimension of the set V (i.e., the total number of vertices).
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Fig. 1: Overview of ExplORB-SLAM.

3 Proposed Method

The proposed system leverages the fast computation of D-optimality using (3) to
achieve online autonomous exploration while performing visual graph-SLAM. It
consists of several different modules, which are depicted in Figure 1 and described
hereafter. The whole system is built within a ROS Noetic framework that eases
the communication between modules and allows the connection with Gazebo.

3.1 SLAM

This fundamental module contains a modified version of ORB-SLAM2 [15] with
a wrapper for ROS Noetic. In order to later perform decision-making, some
changes were required. The most important one involves extracting the pose-
graph and the information matrices1 associated to the relative movement be-
tween vertices (i.e., keyframes) so as to build the required weighted pose-graph.

In a separate thread, we construct the camera-point Hessian of the SLAM
system using the Gauss-Newton approximation to the least squares problem, i.e.,
the Jacobians of the reprojection error as in a BA [17]. It will have the form:

H ′
SLAM =

Hc Hcp

HT
cp Hp

 (4)

where Hc and Hp are the blocks which define the information about the robot
poses and the map points, respectively; and Hcp the correlation between them.

1 Throughout this paper, we will equally use FIM and Hessian matrix, since they are
equivalent when evaluating the latter at the maximum likelihood estimate.
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Fig. 2: Sparsity patterns of the Hessian and Laplacian matrices in a toy example
with 6 poses and 25 map points. From top left to bottom right: SLAM Hessian
H ′

SLAM, reduced Hessian before and after pruning connections with less than 3
observations in common H ′

c, Laplacian and resulting weighted pose-graph.

Since we aim at reasoning over pose-graphs, map points must be marginalized.
The reduced Hessian matrix can be computed using the Schur complement as:

H ′
c = Hc −Hcp H−1

p HT
cp (5)

The block-sparsity pattern of the above matrix is sufficient to define the
pose-graph topology. The edge weights (dependent of the Hessian of the relative
transformations) will be given by off-diagonal terms of H ′

c. To sparsify the pose-
graph, we only keep those edges whose connected vertices share a minimum
number of observations as in the essential graph, i.e., the intersection of the sets
of observed landmarks is above a threshold. Figure 2 contains an example of the
sparsity patterns of the Hessians and the Laplacian, and the resulting graph.

3.2 Frontier Detection

From the sparse 3D point cloud generated by ORB-SLAM, we build an Octomap
and project it to the ground creating a 2D grid map in which frontiers can be
spotted after several morphology transformations. Two frontiers detectors are
used over the occupancy map, somehow following the popular work by Umari
and Mukhopadhyay [4]. The first of them is based of rapidly-exploring random
trees, while the second one employs the Canny edge detection algorithm. The
candidates are clustered using the mean-shift algorithm, and then filtered to
prune old points, low-informative returns and unreachable locations. The main
limitation of this module is that the candidate search is restricted to the ground
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Fig. 3: Example of the graph hallucination process towards frontier fi, consider-
ing np,min = 3 and np,max = 6. A loop closure edge with probability pLC = 1
has been created between vertices “fi” and “1”.

surface, limiting the algorithm application to wheeled robots. In future work, we
plan to extend this module to detect 3D goals from sensor measurements, lever-
aging the insight that frontiers are bound to appear in recently sensed areas [18].

3.3 Weighted Graph Hallucination

Graph prediction. The pose-graph from ORB-SLAM is hallucinated towards
every frontier spotted, thus creating as many graphs as frontiers. For each of
them, we add a number of vertices along the expected path to reach the as-
sociated frontier; which is computed using Dijkstra’s global planner from ROS
navigation stack. The more complex or longer the path, the greater number of
vertices will be in the hallucinated branch. We are aware that this method im-
plies evaluating one single hypothesis for each frontier, although it has not been
considered a critical issue. Initially, every vertex in the branch is just connected
sequentially with its predecessor with an odometry constraint. After that, we
consider the possibility of loop closures to appear. To do so, we first identify the
set of existing map points expected to be observed from every hallucinated node
(i.e., lie inside its expected frustum). If the number of covisible points with any
other existing node in the SLAM graph, np, is higher than a certain threshold,
np,min, the two will be connected by a loop closure edge. This edge will have the
following probability of occurrence associated with it:

pLC =


0 if np < np,min

1 if np > np,max
np

np,max
otherwise

(6)

where np,max is a defined upper bound. Figure 3 illustrates the process of graph
prediction with a toy example.
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Hessian estimation. Once the topology of the hallucinated graph is defined,
the FIMs associated to each edge in the hallucinated branch must be computed
in order to later weight the graph. Assuming that visual odometry uncertainty
will remain similar unless a loop closing occurs, the relative Hessians of odometry
edges can be considered equal to the last one from the known SLAM pose-graph:

Hodom = Hprev (7)

In the case that a loop closure is expected to occur between a pair of vertices,
the Hessian will be given instead by the Jacobian matrices of the reprojection
error of all covisible points and the likelihood of closing the loop, as shown in (6):

HLC = pLC

np∑
i

JT
i J i (8)

Hence, far and scarce covisible points will result in higher expected uncertainties.
The previous Hessians, however, do not account for the decrease in the en-

vironment’s uncertainty as new regions are explored, since the complete set of
landmarks is unknown. To also include it and motivate a balance between ex-
ploration and exploitation, we leverage the insight of discounting information
from Carrillo et al. [5]. We adapt this concept to operate in the task space (i.e.,
uncertainty) rather than in the information space (i.e., entropy). Besides, in-
stead of discounting from the map’s entropy the information value of visiting a
region with high localization uncertainty as in [5]; our approach builds upon the
idea of penalizing the above Hessians if no new areas are visited. Just like the
Shannon-Rényi entropy, the Hessian of the j-th edge will be given by:

Hj = H −
(

1

1− α

)
H (9)

where H is to be computed using (7) or (8) depending on the constraint type,
α = 1+ 1

σ and σ is a parameter that encodes the novelty of the regions to visit.
More specifically, it is computed as the percentage of unseen area expected to be
observed in the occupancy grid map within a 1.5 meter radius around the node.

Graph weighting. Finally, every edge in the hallucinated pose-graph is weighted
with the D-opt of the corresponding Hessian, i.e., γj = ∥Hj∥0; so as to allow
the use of (3).

3.4 Frontier Selection and Navigation

In order to identify the optimal frontier, we compute D-opt for each hallucinated
graph using (3) and select that with the highest value:

f∗ = argmax
f

D-opt(Lγ(f)) (10)
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Fig. 4: View in Gazebo of the AWS bookstore (left) and house (right) scenarios.

with Lγ(f) the weighted Laplacian of the hallucinated graph to a given frontier.
The above optimization (which entails the graph hallucination and Hessian

estimation processes) implicitly penalizes visiting distant candidates and encour-
ages a balance between the uncertainty decrease in both the robot location and
the map that occurs when reobserving known landmarks, and the increase of
knowledge about the environment when visiting new regions.

Since the global plan was already computed, navigation comes down to fol-
lowing that path, a task inherent of the local planner. We use the time elastic
band approach [19], which optimizes the trajectory locally with respect to dif-
ferent constraints. As occurred with the global planner, the local planner acts
over a cost map built from lidar measurements.

3.5 Recovery Behavior

As shown in Figure 1, navigation goals can be exceptionally obtained from the
recovery module if ORB-SLAM gets lost during exploration. In such cases, the
robot uses the wheel odometry to localize itself and generates navigation goals
to previously-visited areas in order to facilitate relocalization. Since most usual
tracking losses are due to getting excessively close to an obstacle, the first goal
consists of a 180° rotation. If no relocalization occurs, the robot is commanded to
previously-visited locations with high relocalization potential. To identify them,
we search all the pose-graph nodes within a 2 m radius and compute the number
of map points visible from each of them. The preferred destination will be that
with highest map point density.

4 Experimental Validation

The system has been tested in Gazebo simulator. The experiment consists of
autonomously exploring AWS bookstore and house scenarios2, which texture is
rich enough to be processed by visual SLAM algorithms; see Figure 4. Termi-
nation condition is the absence of candidate frontiers. We used a wheeled robot
with a Kinect RGB-D camera (for SLAM) and a lidar (for path planning and
safe navigation). All experiments have been performed in Ubuntu 20.04 and ROS

2 https://github.com/aws-robotics/
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Fig. 5: SLAM image with matched landmarks, Octomap and grid map built.

Fig. 6: Examples of the graph hallucination process during exploration.

Noetic, using an Intel Core i9-10900K CPU and a NVidia GeForce RTX 3070
GPU. For more details on the configuration parameters of each module, we refer
the reader to the project repository.

To better show the proposed system, figures 5 and 6 contain two operating
examples of the different modules during exploration of the house environment.
In the former, we present the image fed to ORB-SLAM and the landmarks
detected (left). Right image contains the Octomap built from those landmarks,
on top of the depth image point cloud. For visualization purposes, Octomap
height has been restricted between 0.1 and 2m. Also, we include the rectified grid
map and the estimated robot location (blue arrow). On the other hand, Figure 6
illustrates the graph hallucination process towards three different frontiers (green
squares). In all cases, the SLAM (red) and hallucinated (blue) pose-graphs have
been plotted on top of the rectified grid map. While the first frontier does not
produce reobservation edges in the hallucinated graph, the second and third
do; showing that along the path to reach them, a greater number of known
landmarks is expected to be observed.

Finally, figures 7 and 8 show the resulting maps and pose-graphs after the
exploration of the two environments. In the first one, exploration lasted 560s
and ORB-SLAM was able to close two loops —thus performing two graph op-
timizations. In the second one, the time increased to 984s and 5 optimizations
were performed. Decision making represented only 5% and 7.3% of these times,
respectively. Both environments were fully explored, despite the presence of open
regions in the grid maps that correspond to low-textured walls in the simulator.
Since planning feasibility is checked for all candidates, no frontiers were detected
in these areas.

https://github.com/JulioPlaced/ExplORB-SLAM 
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Fig. 7: Maps and pose-graphs generated during exploration of house scenario.

Fig. 8: Maps and pose-graphs generated during exploration of bookstore scenario.

5 Conclusions

In this work, we have presented an open-source active SLAM method based
on ORB-SLAM2, a visual graph-SLAM system that creates a landmark rep-
resentation of the environment and accurately estimates the robot trajectory.
We employ that information to perform decision-making over graphs, which in-
volves: (i) identifying the candidate destinations, (ii) hallucinating the existing
pose-graph towards those destinations and weighting their edges appropriately,
and (iii) selecting the D-optimal candidate by analyzing the topology of the
graphs. Experiments conducted on realistic simulated environments demonstrate
the performance of the method. As future work, we plan to study multi-robot
exploration behavior and conduct 3D experiments.
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